

FACULTY/PRESENTER DISCLOSURE

Faculty: Hashim Kareemi

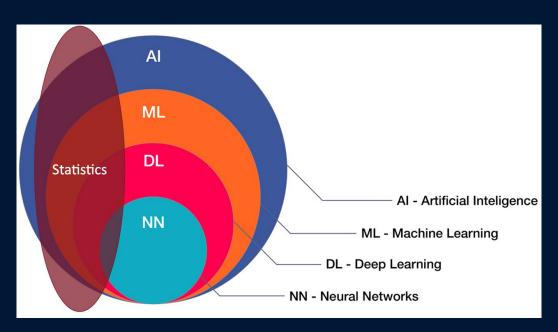
Relationships with financial sponsors:

- Any direct financial relationships including receipt of honoraria:
 - CIHR (Canada Graduate Scholarship Master's)
 - VAEPA Research Award
 - Consultant with UBC Digital Emergency Medicine
- Memberships on advisory boards or speakers' bureau: None
- Patents for drugs or devices: None
- Other: financial relationships/investments: None

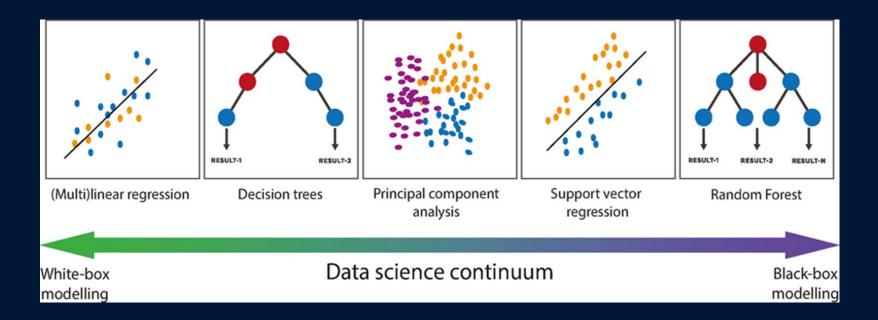
All content was developed independent of financial relationships listed above.

None of the funding groups listed had any direct influence on the content of this work.

LEARNING OBJECTIVES


- 1. Define "Artificial Intelligence" and "Machine Learning" and their potential role in addressing healthcare-related issues.
- 2. Review the current landscape of clinical AI tools and the gap between development and implementation.
- 3. Discuss reasons why the development-implementation gap exists in healthcare.
- 4. Propose solutions for bridging development to implementation of clinical AI tools, with a focus on British Columbia.

1. DEFINING ARTIFICIAL INTELLIGENCE


AN OVERVIEW OF ARTIFICIAL INTELLIGENCE

- Artificial Intelligence (AI)
 - Machine Learning (ML)

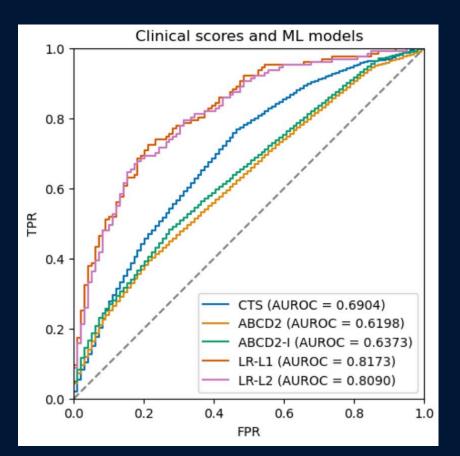
MACHINE LEARNING VS. STATISTICS

"GENERATIVE AI" AND NATURAL LANGUAGE PROCESSING

HEALTHCARE IN CRISIS

ARTIFICIAL INTELLIGENCE AS A HEALTHCARE SOLUTION

Machine Learning Versus Usual Care for Diagnostic and Prognostic Prediction in the Emergency Department: A Systematic Review



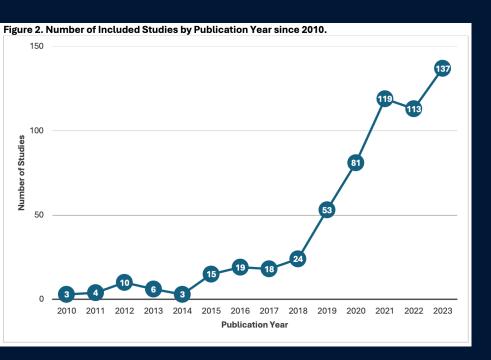
Outcome	Machine Learning (AUROC)	Usual Care (AUROC)	
In-Hospital Mortality	0.74-0.94	0.69–0.81	
Critical Care Outcomes	0.80-0.91	0.68-0.88	
Hospitalization	0.80-0.83	0.64-0.82	

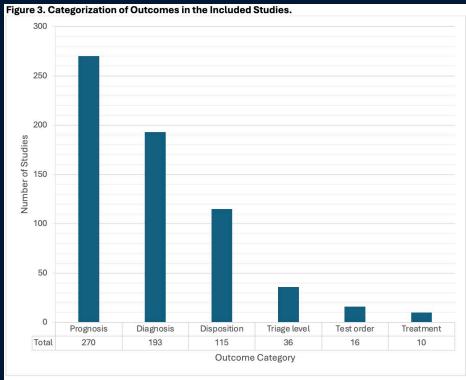
Krishan Yadav MD, MSc

MACHINE LEARNING FOR STROKE PREDICTION

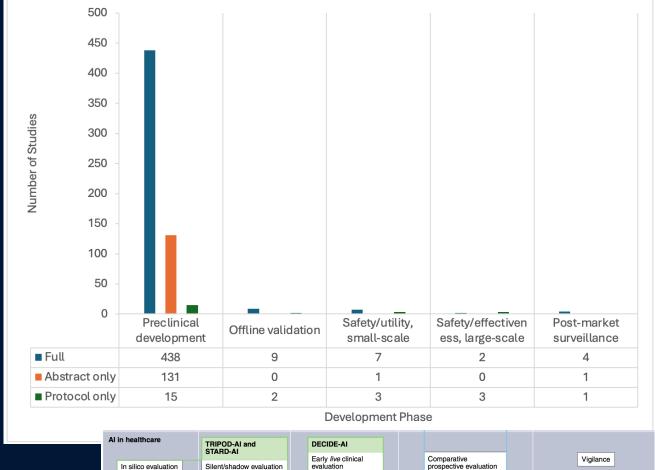
2. LANDSCAPE OF AI TOOLS IN HEALTHCARE

CLINICIANS WANT AI TOOLS - WHERE ARE THEY?




DECIDE-AI DEVELOPMENT PATHWAY

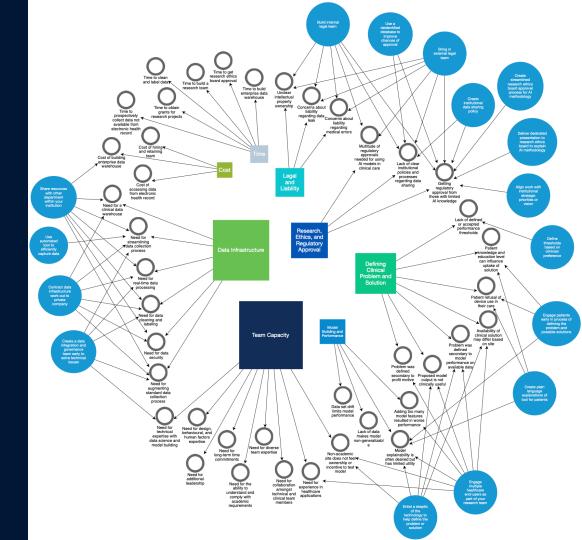
Preclinical development	Offline validation [§]	Safety/utility, small-scale		Safety/effectiveness, large-scale		Post-market surveillance
Drugs Preclinical trials		Clinical trials, pha		SPIRIT(-A CONSORT		Pharmacovigilance, phase 4
Al in healthcare In silico evaluation	TRIPOD-AI and STARD-AI Silent/shadow evaluation	DECIDE-AI Early live clinical evaluation		Comparati	ve e evaluation	Vigilance
Surgical innovation						
IDEAL stage 0			IDEAL stage 2b	IDEAL sta	ge 3	IDEAL IDEAL stage 4


RESULTS OF SCOPING REVIEW

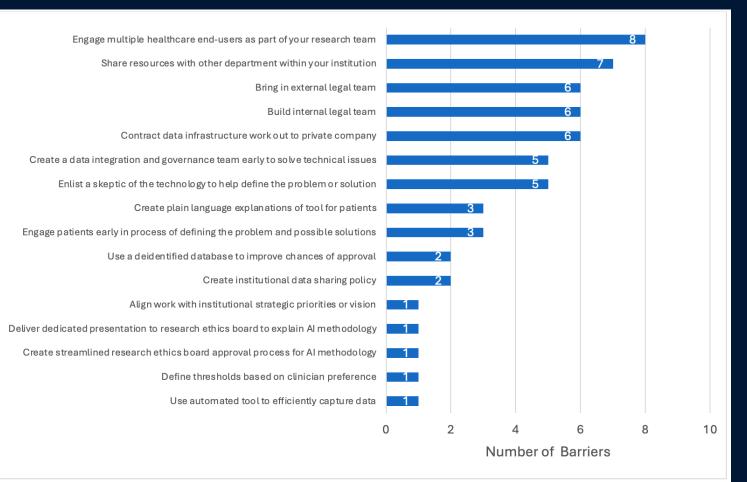
THE AI CHASM

Figure 4. Phases of Development of the Included Studies, as Defined by the DECIDE-AI Guidelines, Stratified by Publication Stage.

3. UNDERSTANDING THE AI CHASM


TALKING TO EXPERTS

COMMON BARRIERS


- 1. Team Capacity
- 2. Data Infrastructure
- 3. Defining Clinica Problem
- 4. Ethics and Regulatory Approval
- 5. Legal and Liability Concerns
- 6. Model Building and Performance
- 7. Time
- 8. Cost

POSSIBLE FACILITATORS

UNDERSTANDING THE AI CHASM

4. BRIDGING DEVELOPMENT TO IMPLEMENTATION

IMPLEMENTATION SCIENCE

SFU-UBC IMPLEMENTATION SCIENCE TRAINING INITIATIVE

REPORTING GUIDELINES FOR AI DEVELOPMENT

TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods

Reporting guideline for the early stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI

METHODOLOGICAL STANDARDS FOR AL DEVELOPMENT

1. The proposed Aladdress a clinical problem that has been identified as

2. The output of the AI-CDS should provide clinical utility in terms of the content and timing of the prediction or recommendation provided.

CDS should

important to clinicians and

patients.

3. AI-CDS development should involve a multidisciplinary team including clinical experts and end-users (e.g. physicians, nurses), research and data scientists (e.g. methodologists, statisticians. computer scientists. engineers) and. when possible, individuals with lived experiences (e.g. patients. family members, caregivers).

- 5. The outcome of interest being predicted by the AI-CDS should use a valid reference standard or definition, where relevant
- 6. Data used to develop and evaluate the Al-CDS should be of sufficient quantity to ensure precise predictions and minimize overfitting.

 7. Development and evaluation (including internal and external validation) of Al-CDS should follow and be reported according to best practices as outlined in the TRIPOD+AI statement.

- 8. Al-CDS should be evaluated using data from new clinical settings prior to implementation in that setting to ensure comparable performance is maintained.
- 9. Implementation of the Al-CDS should be considered early during development, and address factors such as existing clinical workflows. information technology infrastructure, and organizational readiness.

ctrin

10. Development and evaluation of AI-CDS must follow local institutional research ethics and/or quality improvement practices including strict adherence to data privacy regulations.

11. Data used for development and evaluation of Al-CDS should be made anonymous and available for sharing and crosstraining between different centres. where possible.

STREAMLINING APPROVAL PROCESSES: UBC WOMEN'S AND CHILDREN'S AI CHECKLIST

BC WOMEN'S HOSPITAL+ HEALTH CENTRE

Provincial Health Services Authority

University of British Columbia - Children's & Women's Research Ethics Board

UBC C&W Research Ethics Board

Room A2-141A

950 West 28th Avenue Vancouver, B.C. V5Z 4H4

Tel: (604) 875-3103

Email: cwreb@bcchr.ubc.ca

Website: www.phsa.ca/researchethics

RISe: https://rise.ubc.ca

CREATING PARTNERSHIPS FOR POLICY: AITECCC

Faculty of Medicine

https://digem.med.ubc.ca

CREATING COMMUNITY: AI HUB

CONCLUSIONS

 Define "Artificial Intelligence" and "Machine Learning" and their potential role in addressing healthcare-related issues.

- 2. Review the current landscape of clinical AI tools and the gap between development and implementation.
- 3. Discuss reasons why the development-implementation gap exists in healthcare.
- Propose solutions for bridging development to implementation of clinical AI tools, with a focus on British Columbia.

