CRISIS sessions: Mechanical Ventilation

Dr Julian Barnbrook October 22nd 2025 | 0730-0900

Land Acknowledgement

I acknowledge that am grateful to live, work and play on the traditional, ancestral and unceded territory of the Lheidli T'enneh First Nation

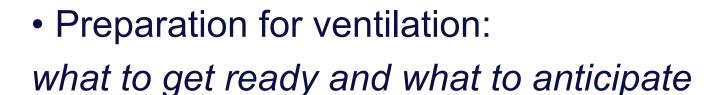
Presenter Disclosures

None

Learning Objectives

Identify those patients requiring mechanical ventilation

Apply knowledge to plan and enact strategies for providing ventilatory support


Manage common complications encountered in the ventilated patient

OVERVIEW

Indications for ventilation

Case examples

Troubleshooting in a rural and remote context

INDICATIONS FOR VENTILATION

Primary respiratory indications:
 actual or impending respiratory failure

neurological,

logistical (eg for safe transfer)

pain and procedural,

?severe refractory shock, ? Severe acidemia

RESPIRATORY FAILURE

Objective markers:

ABGs, FiO2 requirements, RR and work of breathing, LOC

Subjective influences:

'looks terrible' 'exhausted', expected trajectory, 'can't stay here'

Local context: not always appreciated!

CASE NO 1

63 year old woman with 3 day history of fever and cough pmh: HTN, dyslipdemia,

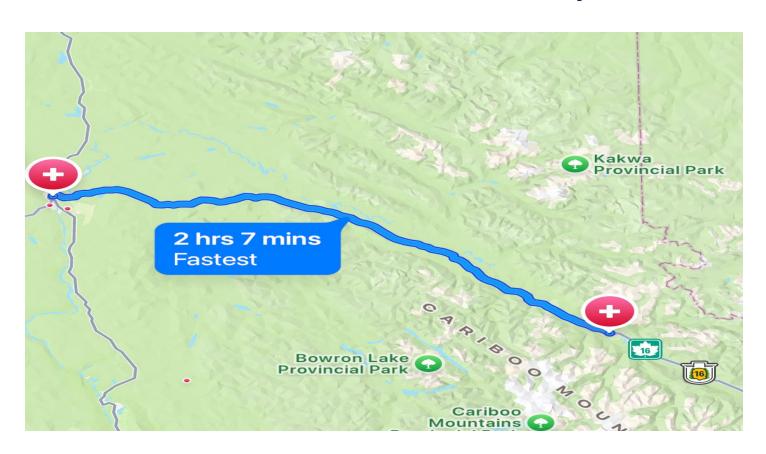
Presents to ED in McBRIDE at 22:00 with worsening dyspnea

SpO2 83% on room air in ED. 91% on 15L/min NRBM RR 28/min

CXR shows patchy consolidation

CASE NO 1: RESOURCES

Human: Locally - 2 ED nurses, GP colleague at home just off shift


Equipment: airway equipment and medication, Hamilton T1 transport ventilator and monitor

CASE NO 1: CONTEXT

211 Km to UHNBC – minimum 2 hours by road

CASE NO 1: APPROACH

Decision making:

Task allocation:

Remote support and cognitive aids:

CASE NO 1: DECISION MAKING

Initial Management: O2, vitals, investigations and antibiotics

HFNC: 60L/min, 80 % O2

ABG on HFNC: pH 7.34. CO2 35, O2 51 O2 sat 90%

Looks tired and unwell

CASE NO 1: DECISION MAKING

Severe hypoxemic respiratory failure (p/f: < 100)

UBC

Medicine
CONTINUING

DEVELOPMENT

Trajectory?

Local resources: effect on capacity

Remote support: nearest ICU physician, RUDI etc, RT support

CASE NO 1: PREPARATION

Equipment: ventilator, gas supply, power supply, circuit, HMEF, monitoring, suction operating manual

What are the initial ventilator settings?

How might this patient behave when I initiate ventilation?

CASE NO 1: INITIAL VENTILATOR SETTINGS

Patient factors: O2 requirement, IBW and body habitus

Ventilator factors:

Hamilton T1 (NH)

Monnal T60

CASE NO 1: INITIAL VENTILATOR SETTINGS

Mode: controlled/spontaneous

Settings: FiO2

respiratory rate

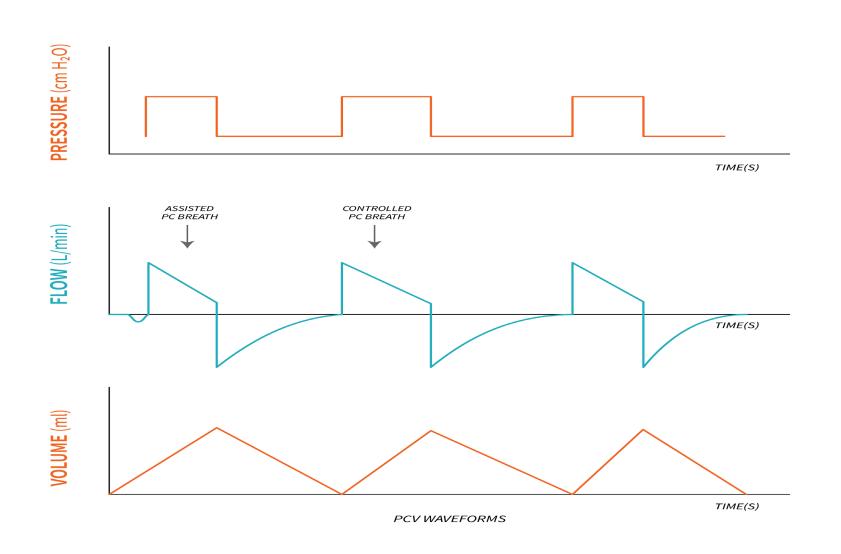
tidal volume/pressure

PEEP

flow rate/I:E ratio/Ti

MICRO-TEACHING: VENTILATOR SETTINGS

Controlled modes:



PCV and VCV: variations on PCVG/VC+

CMV and AC

MICRO-TEACHING: VENTILATOR SETTINGS

CASE NO 1: INITIAL VENTILATOR SETTINGS

CASE NO 1: INITIAL VENTILATOR SETTINGS

After 10 minutes: SpO2 92%, peak Paw = 26cmH2O

Auscultation: decreased throughout left lung field and R base

Thoughts?

CASE NO 1: TROUBLE SHOOTING

High peak pressures and low O2 saturations

Circuit vs patient? Disconnect and manually ventilate

Suction

CXR/withdraw ETT 2-3cm

CASE NO 1: TROUBLE SHOOTING

CASE NO 1: DISCUSSION

How would this work in your facility?

What extra resources would (or should?) be available?

Case NO 2: Presentation

• 38 year old male with known asthma presents to PRRH with acute onset respiratory distress. Nil else significant in pmh.

SpO2 92% on 60L/min HFNC 60% O2

CXR unremarkable

Minimal improvement after 3 x salbutamol and ipratropium nebs, MgSO4 and methylprednisolone. Looks tired.

Discussed with ICU IM physician at KRH – advised trial of NIV

ABG: pH 7.24, PaCO2 57, PaO2 89

CASE NO 2: APPROACH

Trajectory: when to intubate and ventilate in bronchospasm? anticipated problems on initiating ventilation

Timeframe: what are the impacts on local resources?

Disposition: what will happen to this patient after ventilation is initiated?

CASE NO 2: CLINICAL COURSE

• 38 year old male with known asthma presents to PRRH with acute onset respiratory distress.. Nil else significant in pmh.

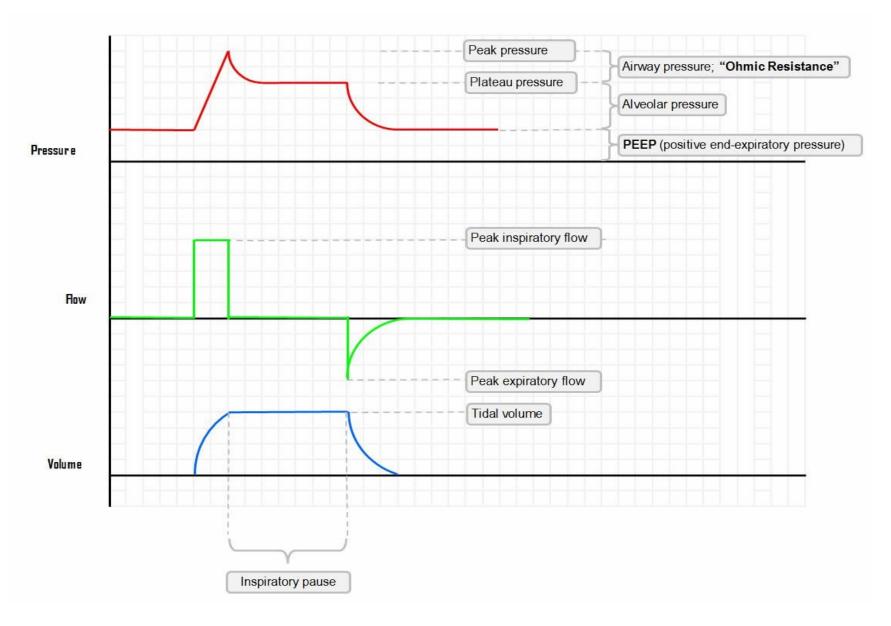
Increasingly tired despite initially tolerating NIV at 10/5cmH2O

ABG: pH 7.24, PaCO2 57, PaO2 89

re-conference with KRH and UHNBC ICU: accepted for transfer to UHNBC

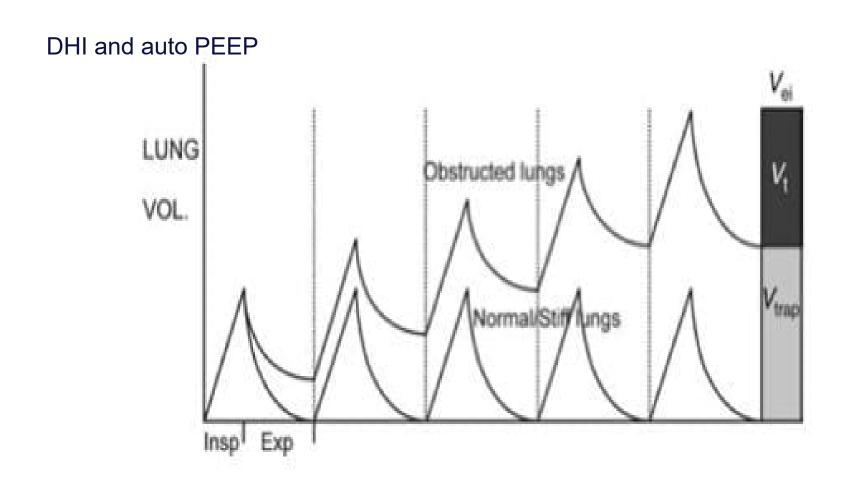
CASE NO 2: PREPARATION

Equipment: ventilator, gas supply, power supply, circuit, HMEF, monitoring, suction operating manual



What are the initial ventilator settings?

How might this patient behave when I initiate ventilation?


CASE NO 2 MICRO-TEACHING

CASE NO 2 MICRO-TEACHING

CASE NO 2: MICRO-TEACHING:

CASE NO 2: INITIAL VENTILATOR SETTINGS

I:E ratio 1:4 (or >) (Ti may be variable)

Short Ti (high inspiratory flow)

Close attention to ventilator waveforms and hemodynamics.

Vt 4-8ml/Kg IBW

CASE NO 2: INITIAL VENTILATOR SETTINGS

Paw will be high but Pplat less raised (unless DHI)

Tolerate hypercapnia – pH > 7.1 to 7.2 to start with

In event of worsening DHI, disconnect and allow full exhalation Reduce RR to maintain Pplat < 25cmH2O

Peep set at 60-80% PEEPi

CASE NO 2: TROUBLE SHOOTING

High Peak Paw alarms – check Pplat – adjust alarms (Ppeak may be 50-80cmH2O)

Ventilator dis-synchrony – ensure adequate sedation and NMBD if needed.

May require near continuous nebulized beta2 agonist

Adjuncts: ketamine/aminophylline/epinephrine/sevoflurane

CASE NO 2: TROUBLE SHOOTING

Bronchospasm can take days to resolve

Regular discussion with closest tertiary ICU pending transfer (may, rarely, require ECMO and alternative destination)

When safe, exclude other pathology (CT chest/PA, TTE, swabs) Therapeutic bronchoscopy – can clear mucous plugs but also risk of exacerbating bronchospasm

CASE NO 2: DISCUSSION

How would this work in your facility?

What extra resources would (or should?) be available?

OTHER INDICATIONS FOR VENTILATION

Neurologic: airway protection,

opioid toxicity (hypoventilation)

neuro-protection (eg raised ICP)

Procedural: EGD, post-surgical,

Logistical: transfer, severe agitation,

Severe shock and acidemia

POSITIONING

Always HoB at 30 degrees

Morbidly obese may need > head-up

Good-side down – semi-lateral

WEANING AND EXTUBATION

Transition to spontaneous mode – PSV

SBT - RSBI - > 105

Neurologically capable of protecting airway

Cuff leak

Plan if fails

SUGGESTIONS:

Call early - call often. Ensure closed-loop communication NH – UHNBC/FSJH/KRH ICU, UHNBC RT

ABG after any significant change or before any major intervention

Don't forget endo-tracheal suction (but not too often)

RESOURCES & REFERENCES MENTIONED

 https://www.hamiltonmedical.com/en_CA/Academy/VenTrainer.html

Local tertiary ICU/RT support and educators

https://rccbc.ca/initiatives/rtvs/

 https://derangedphysiology.com/main/cicm-primaryexam/respiratory-system

Q&A

POST YOUR QUESTIONS IN THE CHATBOX

