Current view & future trends - Alzheimer’s disease 2010

Philip E. Lee, MD, FRCPC
Assistant Professor, Div of Geriatric Medicine
Associate Member, Div of Neurology

Faculty Disclosure Statements

In accordance with Accreditation Council of Continuing Medical Education (ACCME) Standards for Commercial Support, all faculty participation in these programs are expected to disclose to the program audiences any real or apparent conflict of interest related to the content of their presentation.

<table>
<thead>
<tr>
<th>Name</th>
<th>Do you have any relationship(s) with any pharmaceutical and/or corporate sponsors in relation to the presentation of your subject that need to be disclosed? If yes, please describe below.</th>
</tr>
</thead>
</table>
| Dr. Philip Lee| - Involvement in clinical trials sponsored by Bristol-Meyer Squib, Baxter, Plan, Janssen and Pfizer.
 | - Received honorarium from Pfizer, Novartis, and Janssen – Ortho. |

© Original Artist
Objectives

- To describe the pathophysiology behind Alzheimer’s disease;
- To discuss our knowledge about diagnosis and management of Alzheimer’s disease;
- To describe potential future implications of current research in the field of Alzheimer’s disease

Alzheimer’s disease 2010

Overview
- Where have we been?
- Where are we now?
- Where are we going?

Dementia Detection in Family Practice

- Increasing number of patients presenting with memory complaints
- Family physicians
 - Screen patients
 - Initiate specialized care
 - Diagnose early to facilitate planning
 - Identify subset of patients with treatable disorders causing memory loss

Feldman et al. CMAJ 2008; 178: 825-836
Auguste D:
Clinical and pathological description

- Ideas of jealousy
- Rapid worsening memory
- Couldn’t negotiate around her home
- At times, she felt she was about to be murdered and yelled loudly
- Disoriented to time and place

- Rapid forgetting
- Language errors
- Decreased comprehension
- Normal gait and extremities
3 Key Pathological Findings:
- Atrophy of brain
- Neurons damaged and decreased in number
- Progressive accumulation of abnormal material
 - Amyloid plaques (amyloid core)
 - Neurofibrillary tangles (p-tau)

Diagnosing Alzheimer’s disease
- Diagnosis for AD based on clinical criteria (DSM-IV, NINDS-ADRD criteria)
- Clinical practice guidelines
 - Canadian Consensus Conference Guidelines on Dementia 2006
 - American Academy of Neurology Guidelines 2000
- Proposed new research criteria
 - Clinical and biomarkers and functional imaging

New Proposed Research Criteria
Core Diagnostic Criteria for Prob AD
- Early and significant episodic memory impairment with:
 - Gradual and progressive change in memory over more than 6 months
 - Objective evidence of significantly impaired episodic memory on testing
New Proposed Research Criteria

Supportive Features
- Presence of medial temporal lobe atrophy
- Abnormal CSF biomarker
- Specific pattern on functional neuroimaging with PET
- Proven AD autosomal dominant mutation within the immediate family
- Absence of exclusion criteria

Dubois B et al. Lancet Neurol 2007

Brain Abnormality
- Neuronal Injury
 - CSF
 - FDG PET
- Amyloid imaging
 - CSF AB
- Neurodegeneration
 - MRI

Cognitively Normal MCI Dementia

Neuroimaging

© Original Artist

The new guy, Tom, and a new woman are coming. Our kids were all over the place. They're much more composed.
Structural Neuroimaging

- Ventricular enlargement
 - Nestor SM et al. Brain 2008

- Hippocampal atrophy
 - Shi F et al. Hippocampus 2009

PET Imaging with PIB

Price JC et al. J Cerebral Blood Flow & Metabolism, 2005
Early Detection

- FDG-PET, SPECT and structural MRI
- Meta-analysis, 24 eligible studies, n=1112
- Prediction of conversion to AD in patients with MCI
- PET superior to SPECT and structural MRI

CSF Biomarkers

- Decreased a-beta 42
- Increased total and phosphorylated tau

Hansson O et al. Lancet Neuro 2006

CSF Biomarkers

<table>
<thead>
<tr>
<th>Table 1: Association Between CSF Biomarkers and Diagnosis</th>
<th>Group</th>
<th>Total</th>
<th>MC</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomarker Levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha-133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrospinal fluid markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha-133</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebrospinal fluid markers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protein levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in levels</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De Meyer et al. Arch Neuro 2010
Predicting AD – Risk Factor Assessment

- Age
- Female gender
- Family History – especially autosomal dominant pattern
- APOE4

The Dementia Risk Calculator Doubling Rule

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Risk Factor Doubling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>65 years</td>
<td>1%</td>
</tr>
<tr>
<td>66 years</td>
<td>2%</td>
</tr>
<tr>
<td>67 years</td>
<td>3%</td>
</tr>
<tr>
<td>68 years</td>
<td>5%</td>
</tr>
<tr>
<td>69 years</td>
<td>7%</td>
</tr>
<tr>
<td>70 years</td>
<td>9%</td>
</tr>
<tr>
<td>71 years</td>
<td>11%</td>
</tr>
<tr>
<td>72 years</td>
<td>13%</td>
</tr>
<tr>
<td>73 years</td>
<td>15%</td>
</tr>
<tr>
<td>74 years</td>
<td>17%</td>
</tr>
<tr>
<td>75 years</td>
<td>19%</td>
</tr>
<tr>
<td>76 years</td>
<td>21%</td>
</tr>
<tr>
<td>77 years</td>
<td>23%</td>
</tr>
<tr>
<td>78 years</td>
<td>25%</td>
</tr>
<tr>
<td>79 years</td>
<td>27%</td>
</tr>
<tr>
<td>80 years</td>
<td>29%</td>
</tr>
<tr>
<td>81 years</td>
<td>31%</td>
</tr>
<tr>
<td>82 years</td>
<td>33%</td>
</tr>
<tr>
<td>83 years</td>
<td>35%</td>
</tr>
<tr>
<td>84 years</td>
<td>37%</td>
</tr>
<tr>
<td>85 years</td>
<td>39%</td>
</tr>
</tbody>
</table>

Treating Vascular Risk Factors may slow progression of Dementia

- High blood pressure
 - Systolic ≥ 140 or diastolic ≥ 90 mm Hg
- Dyslipidemia
 - Total cholesterol level ≥ 6.2 mmol/l
 - Triglycerides ≥ 2.3 mmol/l
- Diabetes
 - Fasting blood glucose ≥ 7 mmol/l
- Atherosclerotic disease
 - Infarct or lacunes on brain imaging

http://rgps.on.ca/gic/GiC/pdfs/1b%20Dementia%20screening%20overview.pdf, Dalziel et al., accessed Sept 7, 2010

Cognitive decline over time (891 patients)

Deschantre et al. Neurology Today; Aug 2007

Exercise and MCI

- N=198 (median age 83) MCI and 1,126 (median age 80) normal
- Questionnaire based
- Moderate exercise -- such as brisk walking, aerobics, yoga, strength training or swimming
- Midlife moderate exercise – 39% reduction in the odds of developing the condition, and late life moderate exercise 32% reduction

Geda et al. Arch Neuro 2010

Exercise and MCI

- Six month, RCT with N=33, 23 assigned to aerobic exercise (45-60 min/day, four days per week); Control performed stretching exercise

Baker et al. Arch Neuro 2010
Mental Exercises

- Novel activities are likely more beneficial
- Some data to support formal programs
 - Commercial products
 - Individualized programs

Mediterranean Diet

- Highest adherence to MeDi associated with lower incidence of MCI (HR 0.72, 95% CI 0.52-1.00; p=0.05)
- Among MCI pts, less risk (HR 0.52, 95% CI 0.30-0.91; p=0.02) of developing AD

Scarmeas et al. Arch Neurol 2009

Treatment for Alzheimer’s disease

Symptomatic treatment – early 1990s
Currently, there are treatments available that focus on symptomatic management
- Cognitive
- Functional
- Behavioural

Research is still ongoing regarding exploring symptomatic treatments
Future treatments – focus on disease modification

Treating Alzheimer’s disease

Timeline of Approved Treatments for AD

- Development of the cholinergic hypothesis
- First Acetylcholinesterase inhibitor: Aricept
- Donepezil, rivastigmine, galantamine
- Approval of Memantine NMDA receptor antagonist

Timeline:
- 1906: Development of the cholinergic hypothesis
- 1974: Identification of other neurotransmitter systems impaired including glutamate and NMDA
- 1982: Approval of Memantine NMDA receptor antagonist
- 1984: First Acetylcholinesterase inhibitor: Aricept
- 1985: Donepezil, rivastigmine, galantamine
Cholinesterase Inhibitor Therapy

<table>
<thead>
<tr>
<th></th>
<th>Starting Dose</th>
<th>Titratin as Tolerated</th>
<th>Effective Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donepezil</td>
<td>5 mg daily</td>
<td>Increase by 5 mg</td>
<td>5 – 10 mg daily</td>
</tr>
<tr>
<td>Galantamine</td>
<td>8 mg ER daily</td>
<td>Increase by 8 mg</td>
<td>16 – 24 mg daily</td>
</tr>
<tr>
<td>Rivastigmine</td>
<td>1.5 mg twice daily</td>
<td>Increase by 1.5 twice daily</td>
<td>6 – 12 mg daily</td>
</tr>
<tr>
<td>Rivastigmine (patch)</td>
<td>1 patch (5 cm²/9mg) daily</td>
<td>Increase to 1 patch (10cm²/18mg) daily</td>
<td>5cm²/9mg – 10cm²/18mg daily</td>
</tr>
</tbody>
</table>

Medication Clinical Trials in MCI

<table>
<thead>
<tr>
<th>Source</th>
<th>Duration</th>
<th>End Point</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petersen et al. 2005</td>
<td>3 yrs</td>
<td>AD</td>
<td>Vit E, donepezil</td>
</tr>
<tr>
<td>Thal et al. 2005</td>
<td>3-4 yrs</td>
<td>AD</td>
<td>Rofecoxib</td>
</tr>
<tr>
<td>Feldman et al. 2007</td>
<td>4 yrs</td>
<td>AD</td>
<td>Rivastigmine</td>
</tr>
<tr>
<td>Winblad et al. 2008</td>
<td>2 yrs</td>
<td>CDR 1</td>
<td>Galantamine</td>
</tr>
<tr>
<td>Doody et al. 2009</td>
<td>48 wks</td>
<td>AD</td>
<td>Donepezil</td>
</tr>
</tbody>
</table>
Currently not recommended…

- Antioxidants, including Vit E (Grade E, Level 1)
- Vitamin B6, B12 or folic acid for AD in those without documented deficiency (Grade D, Level 3)
 - Recent study (PLoS One) re-opens dialogue on B vitamins
- Insufficient evidence for ginkgo biloba (Grade C, Level 1) – (JAMA Dec 2009)
- HMG-CoA reductase inhibitors (Grade D, Level 3)
- Omega 3 PUFA (Prog NeuroPsychoPharmacology and Biological Psychiatry 2008 & Alz Dem 2009)

Future Directions – Disease Modifying Therapy

Figure 1, Patterson et al. CMAJ 2008; 178(5):551
Vaccination with Ab peptide prevents memory deficits in an animal model of Alzheimer's disease (Morgan et al., 2001)

Ab immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease (Janus et al., 2001)
Post Vaccination Meningoencephalitis in 6%

Sample of Research On-going
- Prodromal AD
 - Gamma – secretase inhibitor
- Alzheimer’s disease
 - Bapineuzumab study
 - Intravenous immunoglobulin

Sample of Research On-going
- Alzheimer’s disease
 - Music Therapy
 - Willingness to Pay for Alzheimer’s drug therapy
- Vascular Cognitive Impairment
 - Exercise and Cognition (PROMOTE)
- Mixed Dementia
- Other dementia, FTD
- Knowledge exchange with affected communities in BC
- Alzheimer’s Disease Therapy Initiative (ADTI)